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Growth of a needle crystal from an undercooled alloy melt

M. Conti
Dipartimento di Matematica e Fisica, Universiti Camerino, 62032 Camerino, ltaly
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The growth of a free dendrite from a supercooled alloy melt is studied with the phase-field model in the
isothermal approximation; the surface tension is assumed to be asymmetric with fourfold anisotropy. For fixed
supercooling and when the anisotropy parametés not too high, the computed tip radigysand velocity
vip Obey the scaling Iavpzvﬁpx vy~ predicted by the microscopic solvability theory. The solute diffusion
across the solid-liquid interface reflects the nonequilibrium conditions of the growth process: the concentration
jump deviates from the static value and decreases with increasing interface velocity. We also explore the effect
of different diffusivities in the solid and liquid phases. Previous studies based on the equilibrium formulation
of the free boundary equations predict a monotonic increa$éuqip with the solute diffusivity of the solid
phase; due to nonequilibrium effects this result is not recovered in the present investigation.
[S1063-651%97)01309-3

PACS numbg(s): 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp

[. INTRODUCTION melting temperature and the latent heat of the solvent, re-
spectively;m=dT/dc is the liquidus slope on th&,c rep-
The steady growth of a needle-shaped crystal from itsesentation of the phase diagram akd= (¢ —c%). From

supercooled melt has been addressed in several studies; dkis perspective, a solvability approad@+10 indicates that
tensive reviews are given [1—3]. The dynamic evolution of for a stable and steady tip propagation surface energy is not
the process is the result of a competition between the norsufficient and anisotropy of the surface energy is required,
equilibrium conditions imposed at infinity and the necessitymoreover, it allows one to identify the dendrite operating
to reject at least one conserved quantity away from the adPoint, fixing the value of the so-called stability constarit
vancing front. For pure substances the growth is controlled™doD/p?vyp . It was shown that, at low values of the anisot-
by the diffusion of the latent heat released at the solid-liquid©Py parametety (defined below, the solvability condition
interface ; for binary alloys the relaxation of the thermal fieldIMPoseso™ ~y™= _
is much faster than the rearrangement of chemical species, so Al these studies were conducted starting from the free
that the limiting mechanism is solute diffusion and thePoundary equations, generally written in the thermal formu-
growth process is generally treated as isothermal. Lafer lation; due to mathematical tractability the boundary condi-

pointed out that, considering the chemical potential rathefions on the solidification front reflected the assumption of
than the solute' concentration as the diffusive field, th ocal thermodynamic equilibrium. However, as pointed out

chemical and the thermal versions of the free boundary difpy Ben Amar[10], this approximation is no longer valid in

fusional model be f I d onto th ¢ rapid solidification processes and yields a strong overesti-
usional model can be formally mapped onto the same Set Q10 of e growth velocity at large values &f

governing equations. To be consistent with the discussion 1, oy ercome the above difficulty, the growth of a free

and the results presented in the subsequent sections, in thengrite can be addressed through the phase-field model
following we will adopt the language of the chemical model. (prpy). A phase fieldp(x,t) characterizes the phase of the
The selection mechanism of the dendrite operating poméystem at each point. A free-ener@y entropy functional is
has intrigued the scientific community for a long time. A {nen constructed that depends ¢ras well as on the tem-
satisfactory theory should relate both the dendrite tip raglius perature and concentration fields; )2 term accounts for
and the velocityvy, to the conditions imposed at infinity, the energy cost associated with the solid-liquid interface. The
namely, the dimensionless supercoolitg- (¢ —c..)/(c{  extremization of the functional with respect to these vari-
—cg), wherec., represents the initial solute concentration of ables results in the dynamic equations for the evolution of
the melt andc andc? are the equilibrium solute concen- the process. This approach was pioneered by Caginalp in a
trations on the liquid side and the solid side of the interfaceseries of studie$11-15 and was initially applied to the
respectively. The parabolic solution, discovered by Ivantsosolidification of pure substances. In recent years the PFM has
[5], neglecting capillary effects, can only determine the Pebeen extended to describe the solidification of binary alloys
clet numberP=pv,/2Das a function ofA (D is the solute [16-20.
diffusivity), i.e., neithew;, nor p is uniquely fixed, but only Wheeler, Boettinger, and McFaddgt6] addressed alloy
their product. The degeneracy of this solution is due to thesolidification in the isothermal approximation and conducted
lack of the necessary length scale for the pattern descriptioran asymptotic analysis of the governing equations for a van-
This deficiency can be removed taking into account the efishlingly small interface thickness. The results they found
fects of a finite surface tensiom, which introduces in the predicted an increase of the interface concentration jump
model the capillary lengtld,; for dilute solutions the latter with increasing the interface velocity; on the contrary, rapid
can be defined ady=0Ta/mLsAc, Tp andL, being the  solidification experiments show that solute segregation on

1063-651X/97/5€63)/31976)/$10.00 56 3197 © 1997 The American Physical Society



3198 M. CONTI 56

the moving front is suppressed at large growth rédgephe-  this choice cannot be correctly based on a microscopical in-
nomenon that is termed “solute trapping’ln a successive terpretation of the process, we observed that the numerical
study Wheeler, Boettinger, and McFadddrY] recovered a results were not significantly affected. In E) R is the gas
consistent description of the solute segregation througidan constant and , the molar volumel,,Ta,Lg,Tg represent
hoc modification of the model, inserting into the free-energythe latent heat and the melting temperature of pirand
functional a Wc)? correction acting to oppose the sharp B, respectively. The model parametersB, 7 are related to

transition of the solute profile across the interface. the material properties through the relatiga8]
Caginalp and Xid18] and Caginalp and Jong¢49] re-
phrased the simpler and more natural version of the model, 120
without the (Vc)? term, and identified through an T e )
asymptotic analysis the sharp interface limit of the phase-
field equations; in this limit both the Gibbs-Thompson effect 6oe
and the interface kinetic undercooling at large velocities are B= T 4

properly described. Subsequently, Cditl,22 showed that
for small but finite interface thickness the model is also ca- 6
.. . ELA

pable of predicting solute trapping. = ,

In the present paper the phase-field model, in the formu- maTa
lation presented by Caginalp and Jon&$], is utilized to _ _ o
simulate the growth of a needle crystal in two dimensions. Iwhere € is the thickness of the solid-liquid interface and
is the aim of this study to determine how and to what extentta iS the kinetic undercooling coefficient that relates, for a
nonequilibrium effects contribute to alter the picture of thePure substance, the interface undercooling to the interface
process given in previous studies that, due to mathematicielocity throughv = u(TAo—T). _ o
difficulties, were based on the equilibrium formulation of the ~ To allow for different diffusivities in the solid and liquid
free boundary model. phases, in the followind will be taken as

©)

D=Ds+ ¢(D;—Dy), (6)

Il. PHASE-FIELD MODEL
D, and Dg being the diffusivities in the liquid and in the
solid, respectively. Anisotropy can be inserted in the model

The model describes the solidification of an ideal SO|uti0nf0||owing the ideas of23]; scaling lengths to some reference
of componentsA (solven) and B (solutg in terms of two  scale¢ and time to£%/D,, the model equations become
fields: the scalar phase fieldl and the local solute concen-
tration c. Assuming heat diffusion much faster than solute d
diffusion, the isothermal approximation is allowed. The field Tt mx
¢ is an order parameter assuming the valgesO in the
solid and¢=1 in the liquid at equilibrium; intermediate val-
ues correspond to the interface between the two phases. The
model is developed along the lines suggested by Caginalp
and Jone$19]; the simultaneous variations of a free-energy

A. Governing equations

2 J ’ ad,
V-7 (0)V¢]+@ n(0)n'(0)—~

FYARY, 1
7(60)n'(0) W) —%72¢(1—¢)(§— cb)

o

functional with respect to the two fields give the dynamic i i Cot(1—0)1C
equations = A(H)cCs+(1-0)Gal (7)
7 BTV aTo(1-6)| 5 o o R
Tt “ 2 1= VM@ Vet (g)e(l-c)(Ha=Hp) V], (8)
T T
—q(¢) CLB(]-__ +(1_C)LA(1__) : where
Tg Ta
~ §Las
(1) Gag=——(T—Tpp), 9
ABT TA,B( AB) 9
7 v DVe+De(1-c)im L
-—=V- C c(l—cCc)— ~ Um LaB
ot RT Hag=——"(T—Tpg), 10
AB RTTA'B( A.B) (10)
X|Lgl 1 T) L(l T)ng} 2
e Y N : T
Ts Ta m= el A, (12)
DiLa
The standard version of the model corresponds to the choice
g(¢)=1 in Eq. (1). However, for numerical convenience, ~_¢€ (12
we decided to force the order parameter to the valped €= 13

and 1 in the bulk phases even in nonequilibrium conditions;
this can be obtained with($) =304%(¢—1)? [20]. Though  and\(¢) is defined as
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TABLE |. Material parameters for the Ni-Cu alloy.

Parameter Nickel Copper
T (K) 1728 1358

L (J/cn?) 2350 1728
v (cmmole)? 7.0 7.8

o (Jlent) 3.7x10°° 2.8x10°°
B (cm/K s)° 160 198

D, (cn¥ls) 10°° 1073

8An average value of 7.4 has been taken.
bFrom the estimation of Willnecker, Herlach, and Feuerba¢Ref.

[31)).

D

D)’ (13

N(g)= 2+
()= 2+ 0

In Eqg. (7) @ is the angle between the normal to the interface
and a fixed directiorithe x axis in our calculations choos-
ing the functionn(#)=(1+ y cos4), a fourfold anisotropy
of the surface tension is enforced, withspecifying the in-
tensity of the effect.

FIG. 1. Needle crystal at=0.07; the anisotropy parameter is
v=0.035.

the uniform undercooled melc&c,,, ¢=1), a semicircu-
, o lar solid germ ¢=c.., ¢=0), is nucleated, with the center
B. Computational approximations atx=0,y=y,/2 and radiusR,=0.1. The germ’s surface is

To conduct the numerical simulations we referred to theperturbed by a random corrugation; at the early stage of the
thermophysical properties of an ideal solution of nicfsgll-  growth the high-frequency components of the perturbation
vend and coppefsolute, summarized in Table |. However, coalesce and the pattern selected by the system is a single
due to limitations of computational resources, we weredendrite that propagates into the channel alongxtlais.
forced to use some approximations elucidated below. An explicit Euler integration scheme was employed to

In two dimensions the numerical cost of the solution isadvance the solution forward in time; second-order central
dramatically dependent on the interface thickness, increasingjfferences were used to discretize the Laplace operator. To
ase . In this study, along the lines suggested by Caginalgensure an accurate resolution of both the phase and the con-
and Socolovsky[15], a value is selected for the interface centration profiles the grid spacing was selected Aas
thickness that is small compared to the lowest geometric= Ay=6.25<10"3; with these values no preferred direc-
scale that characterizes the process, namely, the radius tdns emerge in the computational grid, due to the truncation
curvature of the dendrite tip and, nevertheless, more than tegrrors. A time stepAt=0.125< 10 * was required for nu-
times greater than realistic values. merical stability. To verify the consistency of the numerical

The diffusivities of the phase and the concentration fieldsscheme, at each time step the solute conservation was
are quite different and Eq$7) and(8) should be discretized checked and in all the simulations was verified within
with different resolution in the time domain, with the finer 0.001%.
grid fixing the numerical cost. To overcome this difficulty

and to .allow a coarser Fime_ grid, we decidgd to reduce the IV. NUMERICAL RESULTS
diffusivity of the phase field in E(.7), choosing a value for o
D,about 18 times the actual valuénotice that mass diffu- At the melt temperaturé = 1574 K the equilibrium solute

sion is still modeled as a process much slower than heatoncentrations in the bulk phases afe=0.399 09 anctf
diffusion). Moreover, to allow the growth of the needle crys- =0.466 24. As we fixed..=0.408 49, the initial supercool-
tal in a space domain of reasonable size, the surface tensiamg is A=0.86.
of both the materials was reduced by a factor 2.5. As we As a default we seéD =D, ; successively we will present
fixed the temperature of the melt a=1574 K and the the effects of a nonsymmetric diffusion in the two phases.
length scale at=2.1x10"4 cm, the model parameters be- Except for temperature, dimensionless units will be used
come €=2.8x10 2, m=0.6,Gy=—3273,Gg=4263,H,  throughout this section.
=-0.1184, and'-u|B=O.1554. With anisotropic surface tension, a distinct needle crystal
grows along thes axis; a typical example of this behavior is
shown in Fig. 1. Fory>9x10 3, after a transient that be-
comes shorter ay increases, the dendrite tip propagates at
Equations(7) and (8) have been solved on a computa- constant velocity. Below this value we did not succeed in
tional domain Gs<x<Xx,, 0<y<y,,; choosing x,=y, identifying a steady growth regime, probably due to the short
=4 was enough to prevent finite-size effects. Neumann conperiod of computation and the small system size.
ditions were imposed at the domain’s boundaries. Initially, in  First we will examine the morphology of the crystal with

IIl. NUMERICAL METHOD
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FIG. 2. Two snapshots of the crystal's interface in a frame of F!CG- 3. Curvature of the solid-liquid i_nterfac(e.quare; com-
reference centered at the dendrite tip. The solid line represents tfgred to that of the best-fitting parabdilid curve; y=0.02 and
best fitting parabold(y)=ay?; y=0.02. t=01

respect to the predictions of existing models. In a frame ofoncentration on the solid and the liquid side of the interface,
reference moving with the tip, the interfapeefined as the respectively deviates from the equilibrium value, increas-
locus ¢(x,y,t)=0.5] is described by an even functidiy) ing towards unity at Iarge_ interface velo_cmes. Th|s_phenom-
of the shifted coordinaty_zy—ytip. Figure 2 shows(y) at  €non, termedsolute trapping was explalnc_ad by A2|{24],

two different times(here y=0.02. We observe that in the AZiZ and Kaplan[25], and Aziz and Boettinge26] within
region|y[<0.3 and fort=0.06 the dendrite tip preserves its the cpntlnuous growth model, as a result of a diffusive redis-
shape. tribution of solute and solvent across the interface. They

The free boundary diffusional model, neglecting surfacefound a dependence
tension and nonequilibrium effects, admits a solution of the ket ol0,
e

form [5] k(v)= ,
1+v/vd

{(y)=ay?, (14)
. ] . o whereuvy is a characteristic kinetic velocity, which is often
wherea is related to the tip velocity and the initial super- taken asD//, D being the interface diffusivity and’ the

17)

cooling through interface width. For a shape-preserving cui(g), the nor-
mal interface velocity, as a function gf is given by
TUtip Utip Utip
A= —exp( —) erfc( —) . (15
Visa "\ 4a V 4a p= P (18)
V1+¢'2

Trying to adapt the above solution to the interface position at

t=0.1, a least-squares fit indicated a best valua#®8.26.  Using Egs.(17) and (18), it is possible to evaluat&(v)
The fitting parabola is superimposed on the curves of Fig. 2along the two branches of the interface. Preliminarily we
Using the numerically computed value of the tip velocity have to fix the interface widti'.
vip=29.8, Eq.(19) yields A=0.856, which is quite close to  Figure 4 shows, along the crystal axis, the solute concen-
the actual valueA=0.86. o tration profile normalized asc(x)=[c(X)— Cminl/(Cmax
Figure 3 shows, as a function gf the curvature of the —c_.y wherec,,, andc,zare the minimum and maximum
fitting parabola compared to that of the actual interface, thgalues ofc(x) along thex axis. We observe that(x) jumps
latter being determined numerically through the relation  from 10% to 90% of its maximum value within a length of
_ order/ =0.044; then we fix this value as the interface width.
o y) (16  Choosing the interface diffusivity a8 =D¢=D; results in
- (1+('2)32 vq=23. Figure 5 shows the partition coefficisnevaluated
through Eqs(17) and (18) as a function ofy; on the same
We observe in the tip region a marked increase of the actugraph we represented the ratig/c, as resulting from the
curvature, beyond the values predicted by Bgl); the in-  numerical simulation. The agreement between the two
ability to describe the interface through a parabolic curvecurves is quite good. It is worth observing that E@7)
near the tip has to be ascribed to the perturbations introducezbnveys no information about the interface curvat(ie
by capillary and nonequilibrium effects. Gibbs-Thomson effect predicts ancrease of kdeparting
Let us now examine the solute distribution across the infrom the crystal tip[27]); then we see that the numerical
terface. It is well known that in rapid solidification processesresults reflect the trapping of solute at the moving front. We
the partition coefficienk=c/c, (c;andc, being the solute now discuss the response of the growth dynamics to varia-
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FIG. 4. Normalized concentration profile along the crystal’s

FIG. 6. A log-log plot of the producp?v, versus the anisot-
axis; y=0.02 andt=0.1. g-og p b b0

ropy parametery. The super-imposed straight line corresponds to
tions of the anisotropy strength. Starting from the free the power lawp?u oy~ "™

boundary formulation of the problem, Pelemd Pomeau

[28] established a nonlocal equation for the deviation of the All the previous results were obtained assuming symmet-
interface profile from the Ivantsov’s solution. As shown by ric diffusion in the solid and liquid phases. This description
Barbieri and Langef8] and Ben Amai10], the solvability = could be adequate for thermal dendrites; however, when the
condition that has to be satisfied requires that the produdliffusion field is the solute concentration, a more realistic
p?vyp scales asy” "' for low values ofy. This result was approach should account for the lower mass diffusivity in the
confirmed for the solidification of a pure substance by thesolid phase. Barbieri and Lang8] utilized the free bound-
phase-field simulations of Wheeler, Murray, and Schaefeary equations, assuming local thermodynamic equilibrium, to
[29] and Marinozzi, Conti, and Marini Bettolo Marcof80]. show that the produqtzvtip depends on the ratib4/D, as
Figure 6 shows in a log-log plqﬁzvtip versusy. For y=

9x 102 the tip radius and velocity were computed at the ) 1+D/D,
end of the simulation, when a true steady regime had not yet P Viip= 5
been reached; the tip radius was determined evaluating the

expressionp= ¢,/ ¢$,, on the dendrite axis, at the solid-
liquid interface. The numerical data fit well the ”’* power
law (solid ling) for y=<0.02. This result is somewhat surpris-

(p*vip)lp, /D=1 (19

The extension of this result to the chemical problem is not
straightforward. For thermal dendrites, due to the Gibbs-

Y RPN ; Thomson effect, the growing solid is not isothermal and heat
ing: as the concentration field is strongly influenced by solutqS driven towards the cold tip region. When diffusion in the

trapping, one .COUId expect a _supstantlal deviation of FheSOIid phase is suppressed, the tip can propagate at larger
growth dynam_|.cs.from the predictions of a model that dls"velocity and[see Eq.(15)] the tip radius diminishes; as the
cards nonequilibrium effects. productpu i, depends only o, pzvtip diminishes as well.

0.96 Taking into account the interface kinetics undercooling alters
this picture quantitatively, but not qualitatively.

For chemical dendrites the situation is quite different.
Curvature lowers the solute concentration near the tip, in the
solid region; on the contrary, solute trapping, whose effect is
maximal near the tip, is there a continuous source of solute.
Notice that, along the two branches of the interface, the two
effects decay in a different way. Figure 7 showgy) for
D=0 (triangles andD =D, (squarey the accumulation of
solute near the tip is clearly recognizable when diffusion in
the solid is suppressed. Due to competition of these effects, it
is not simple to predict the dependence of the growth dynam-
ics on the ratidD¢/D,. As shown in Fig. 8, contrary to the
0.90 . ‘ . predictions of Eq.(19), pzvtip decreases with increasing

-0.40 -0.20 0.00 0.20 0.40 D./D,.

094

092

V. CONCLUSIONS
FIG. 5. Partition coefficienk=c/c, along the solid-liquid in-

terface. Solid line, as derived through Ed7); dashed line, results The growth of a needle crystal into its undercooled melt is
of the numerical simulation. The anisotropy parametes-0.02  generally addressed through the free boundary diffusional
andt=0.1. model; the mechanism that underlies the selection of the tip
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FIG. 7. Solute concentration on the solid side of the interface FIG. 8. Produc®vy, versus the ratid,/D, . The anisotropy
versusy. Triangles,D;=0; squaresP;=D,. The anisotropy pa- Parameter isy=0.02.

rameter isy=0.02 andt=0.1. persaturated binary solution. The solute segregation across

the moving front is essentially determined by the interface
radius and velocity has been identified under the approximakinetics and fits the description given by Aziz, Aziz and
tion of local equilibrium at the solid-liquid interface. In this Kaplan, and Aziz and Boettinger through the continuous
limit the same set of equations can formally describe thegrowth model.
growth process when the diffusion field is either the melt In spite of the strong deviation from the interfacial equi-
temperature or the concentration of impurities. This similaribrium, for low values of the anisotropy strength the
ity is no longer retained when in rapid solidification pro- productpzutip scales asy” "4, along the predictions of the
cesses the interfacial equilibrium is broken, as solute trapfree boundary model. Suppressing diffusion in the solid re-
ping is a phenomenon that has no counterpart in the thermalilts in an accumulation of solute near the tip aﬁd:ﬂp
problem. Through the phase-field model we were able talecreases with increasimiy /D, ; the opposite behavior was
stress the nonequilibrium characteristics of the process. Theredicted within the free boundary model, neglecting non-

system considered was a single dendrite growing into a stequilibrium effects.
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