
PHYSICAL REVIEW E SEPTEMBER 1997VOLUME 56, NUMBER 3
Growth of a needle crystal from an undercooled alloy melt

M. Conti
Dipartimento di Matematica e Fisica, Universita` di Camerino, 62032 Camerino, Italy

~Received 3 December 1996; revised manuscript received 14 April 1997!

The growth of a free dendrite from a supercooled alloy melt is studied with the phase-field model in the
isothermal approximation; the surface tension is assumed to be asymmetric with fourfold anisotropy. For fixed
supercooling and when the anisotropy parameterg is not too high, the computed tip radiusr and velocity
v tip obey the scaling lawr2v tip}g27/4, predicted by the microscopic solvability theory. The solute diffusion
across the solid-liquid interface reflects the nonequilibrium conditions of the growth process: the concentration
jump deviates from the static value and decreases with increasing interface velocity. We also explore the effect
of different diffusivities in the solid and liquid phases. Previous studies based on the equilibrium formulation
of the free boundary equations predict a monotonic increase ofr2v tip with the solute diffusivity of the solid
phase; due to nonequilibrium effects this result is not recovered in the present investigation.
@S1063-651X~97!01309-3#

PACS number~s!: 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp
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I. INTRODUCTION

The steady growth of a needle-shaped crystal from
supercooled melt has been addressed in several studies
tensive reviews are given in@1–3#. The dynamic evolution of
the process is the result of a competition between the n
equilibrium conditions imposed at infinity and the necess
to reject at least one conserved quantity away from the
vancing front. For pure substances the growth is contro
by the diffusion of the latent heat released at the solid-liq
interface ; for binary alloys the relaxation of the thermal fie
is much faster than the rearrangement of chemical specie
that the limiting mechanism is solute diffusion and t
growth process is generally treated as isothermal. Lange@4#
pointed out that, considering the chemical potential rat
than the solute concentration as the diffusive field,
chemical and the thermal versions of the free boundary
fusional model can be formally mapped onto the same se
governing equations. To be consistent with the discuss
and the results presented in the subsequent sections, i
following we will adopt the language of the chemical mod

The selection mechanism of the dendrite operating p
has intrigued the scientific community for a long time.
satisfactory theory should relate both the dendrite tip radiur
and the velocityv tip to the conditions imposed at infinity
namely, the dimensionless supercoolingD5(cl* 2c`)/(cl*
2cs* ), wherec` represents the initial solute concentration
the melt andcl* and cs* are the equilibrium solute concen
trations on the liquid side and the solid side of the interfa
respectively. The parabolic solution, discovered by Ivant
@5#, neglecting capillary effects, can only determine the P´-
clet numberP5rv tip/2Das a function ofD (D is the solute
diffusivity!, i.e., neitherv tip nor r is uniquely fixed, but only
their product. The degeneracy of this solution is due to
lack of the necessary length scale for the pattern descrip
This deficiency can be removed taking into account the
fects of a finite surface tensions, which introduces in the
model the capillary lengthd0 ; for dilute solutions the latter
can be defined asd05sTA /mLADc, TA and LA being the
561063-651X/97/56~3!/3197~6!/$10.00
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melting temperature and the latent heat of the solvent,
spectively;m5dT/dc is the liquidus slope on theT,c rep-
resentation of the phase diagram andDc5(cl* 2cs* ). From
this perspective, a solvability approach@6–10# indicates that
for a stable and steady tip propagation surface energy is
sufficient and anisotropy of the surface energy is requir
moreover, it allows one to identify the dendrite operati
point, fixing the value of the so-called stability constants*
5d0D/r2v tip . It was shown that, at low values of the aniso
ropy parameterg ~defined below!, the solvability condition
imposess* ;g7/4.

All these studies were conducted starting from the f
boundary equations, generally written in the thermal form
lation; due to mathematical tractability the boundary con
tions on the solidification front reflected the assumption
local thermodynamic equilibrium. However, as pointed o
by Ben Amar@10#, this approximation is no longer valid in
rapid solidification processes and yields a strong overe
mate of the growth velocity at large values ofD.

To overcome the above difficulty, the growth of a fre
dendrite can be addressed through the phase-field m
~PFM!. A phase fieldf(x,t) characterizes the phase of th
system at each point. A free-energy~or entropy! functional is
then constructed that depends onf as well as on the tem
perature and concentration fields; a (¹f)2 term accounts for
the energy cost associated with the solid-liquid interface. T
extremization of the functional with respect to these va
ables results in the dynamic equations for the evolution
the process. This approach was pioneered by Caginalp
series of studies@11–15# and was initially applied to the
solidification of pure substances. In recent years the PFM
been extended to describe the solidification of binary allo
@16–20#.

Wheeler, Boettinger, and McFadden@16# addressed alloy
solidification in the isothermal approximation and conduc
an asymptotic analysis of the governing equations for a v
ishlingly small interface thickness. The results they fou
predicted an increase of the interface concentration ju
with increasing the interface velocity; on the contrary, rap
solidification experiments show that solute segregation
3197 © 1997 The American Physical Society
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3198 56M. CONTI
the moving front is suppressed at large growth rates~a phe-
nomenon that is termed ‘‘solute trapping’’!. In a successive
study Wheeler, Boettinger, and McFadden@17# recovered a
consistent description of the solute segregation through aad
hocmodification of the model, inserting into the free-ener
functional a (“c)2 correction acting to oppose the sha
transition of the solute profile across the interface.

Caginalp and Xie@18# and Caginalp and Jones@19# re-
phrased the simpler and more natural version of the mo
without the (“c)2 term, and identified through a
asymptotic analysis the sharp interface limit of the pha
field equations; in this limit both the Gibbs-Thompson effe
and the interface kinetic undercooling at large velocities
properly described. Subsequently, Conti@21,22# showed that
for small but finite interface thickness the model is also
pable of predicting solute trapping.

In the present paper the phase-field model, in the form
lation presented by Caginalp and Jones@19#, is utilized to
simulate the growth of a needle crystal in two dimensions
is the aim of this study to determine how and to what ext
nonequilibrium effects contribute to alter the picture of t
process given in previous studies that, due to mathema
difficulties, were based on the equilibrium formulation of t
free boundary model.

II. PHASE-FIELD MODEL

A. Governing equations

The model describes the solidification of an ideal solut
of componentsA ~solvent! and B ~solute! in terms of two
fields: the scalar phase fieldf and the local solute concen
tration c. Assuming heat diffusion much faster than solu
diffusion, the isothermal approximation is allowed. The fie
f is an order parameter assuming the valuesf50 in the
solid andf51 in the liquid at equilibrium; intermediate va
ues correspond to the interface between the two phases
model is developed along the lines suggested by Cagi
and Jones@19#; the simultaneous variations of a free-ener
functional with respect to the two fields give the dynam
equations

t
]f

]t
5BT¹2f2aTf~12f!S 1

2
2f D

2q~f!FcLBS 12
T

TB
D 1~12c!LAS 12

T

TA
D G ,

~1!

]c

]t
5“•H D“c1Dc~12c!

vm

RT

3FLBS 12
T

TB
D 2LAS 12

T

TA
D G“fJ . ~2!

The standard version of the model corresponds to the ch
q(f)51 in Eq. ~1!. However, for numerical convenience
we decided to force the order parameter to the valuesf50
and 1 in the bulk phases even in nonequilibrium conditio
this can be obtained withq(f)530f2(f21)2 @20#. Though
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this choice cannot be correctly based on a microscopica
terpretation of the process, we observed that the nume
results were not significantly affected. In Eq.~2! R is the gas
constant andvm the molar volume;LA ,TA ,LB ,TB represent
the latent heat and the melting temperature of pureA and
B,respectively. The model parametersa,B,t are related to
the material properties through the relations@19#

a5
12s

eT
, ~3!

B5
6se

T
, ~4!

t5
6eLA

mATA

, ~5!

where e is the thickness of the solid-liquid interface an
mA is the kinetic undercooling coefficient that relates, for
pure substance, the interface undercooling to the interf
velocity throughv5mA(TA2T).

To allow for different diffusivities in the solid and liquid
phases, in the followingD will be taken as

D5Ds1f~Dl2Ds!, ~6!

Dl and Ds being the diffusivities in the liquid and in the
solid, respectively. Anisotropy can be inserted in the mo
following the ideas of@23#; scaling lengths to some referenc
scalej and time toj2/Dl , the model equations become

]f

]t
5m3H “•@h2~u!“f#1

]

]yS h~u!h8~u!
]f

]x D
2

]

]xS h~u!h8~u!
]f

]y D2
2

ẽ2
f~12f!S 1

2
2f D

1
1

6ẽ
q~f!@cG̃B1~12c!G̃A#J , ~7!

]c

]t
5“•@l~f!“c1l~f!c~12c!~H̃A2H̃B!“f#, ~8!

where

G̃A,B5
j

s

LA,B

TA,B

~T2TA,B!, ~9!

H̃A,B5
vm

RT

LA,B

TA,B

~T2TA,B!, ~10!

m5
mAsTA

DlLA

, ~11!

ẽ5
e

j
~12!

andl(f) is defined as
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56 3199GROWTH OF A NEEDLE CRYSTAL FROM AN . . .
l~f!5
Ds

Dl

1fS 12
Ds

Dl
D . ~13!

In Eq. ~7! u is the angle between the normal to the interfa
and a fixed direction~the x axis in our calculations!; choos-
ing the functionh(u)5(11g cos4u), a fourfold anisotropy
of the surface tension is enforced, withg specifying the in-
tensity of the effect.

B. Computational approximations

To conduct the numerical simulations we referred to
thermophysical properties of an ideal solution of nickel~sol-
vent! and copper~solute!, summarized in Table I. However
due to limitations of computational resources, we we
forced to use some approximations elucidated below.

In two dimensions the numerical cost of the solution
dramatically dependent on the interface thickness, increa
ase24. In this study, along the lines suggested by Cagin
and Socolovsky@15#, a value is selected for the interfac
thickness that is small compared to the lowest geome
scale that characterizes the process, namely, the radiu
curvature of the dendrite tip and, nevertheless, more than
times greater than realistic values.

The diffusivities of the phase and the concentration fie
are quite different and Eqs.~7! and~8! should be discretized
with different resolution in the time domain, with the fine
grid fixing the numerical cost. To overcome this difficul
and to allow a coarser time grid, we decided to reduce
diffusivity of the phase field in Eq.~7!, choosing a value for
Dlabout 102 times the actual value~notice that mass diffu-
sion is still modeled as a process much slower than h
diffusion!. Moreover, to allow the growth of the needle cry
tal in a space domain of reasonable size, the surface ten
of both the materials was reduced by a factor 2.5. As
fixed the temperature of the melt atT51574 K and the
length scale atj52.131024 cm, the model parameters be
come ẽ52.831022, m50.6,G̃A523273,G̃B54263,H̃A

520.1184, andH̃B50.1554.

III. NUMERICAL METHOD

Equations~7! and ~8! have been solved on a comput
tional domain 0<x<xm , 0<y<ym ; choosing xm5ym
54 was enough to prevent finite-size effects. Neumann c
ditions were imposed at the domain’s boundaries. Initially

TABLE I. Material parameters for the Ni-Cu alloy.

Parameter Nickel Copper

Tm ~K! 1728 1358
L (J/cm3) 2350 1728
vm (cm3/mole)a 7.0 7.8
s (J/cm2) 3.731025 2.831025

b (cm/K s)b 160 198
Dl (cm2/s) 1025 1025

aAn average value of 7.4 has been taken.
bFrom the estimation of Willnecker, Herlach, and Feuerbacher~Ref.
@31#!.
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the uniform undercooled melt (c5c` , f51), a semicircu-
lar solid germ (c5c` , f50), is nucleated, with the cente
at x50, y5ym/2 and radiusR050.1. The germ’s surface is
perturbed by a random corrugation; at the early stage of
growth the high-frequency components of the perturbat
coalesce and the pattern selected by the system is a s
dendrite that propagates into the channel along thex axis.

An explicit Euler integration scheme was employed
advance the solution forward in time; second-order cen
differences were used to discretize the Laplace operator
ensure an accurate resolution of both the phase and the
centration profiles the grid spacing was selected asDx
5Dy56.2531023; with these values no preferred dire
tions emerge in the computational grid, due to the truncat
errors. A time stepDt50.12531024 was required for nu-
merical stability. To verify the consistency of the numeric
scheme, at each time step the solute conservation
checked and in all the simulations was verified with
0.001%.

IV. NUMERICAL RESULTS

At the melt temperatureT51574 K the equilibrium solute
concentrations in the bulk phases arecs* 50.399 09 andcl*
50.466 24. As we fixedc`50.408 49, the initial supercool
ing is D50.86.

As a default we setDs5Dl ; successively we will presen
the effects of a nonsymmetric diffusion in the two phas
Except for temperature, dimensionless units will be us
throughout this section.

With anisotropic surface tension, a distinct needle crys
grows along thex axis; a typical example of this behavior
shown in Fig. 1. Forg.931023, after a transient that be
comes shorter asg increases, the dendrite tip propagates
constant velocity. Below this value we did not succeed
identifying a steady growth regime, probably due to the sh
period of computation and the small system size.

First we will examine the morphology of the crystal wit

FIG. 1. Needle crystal att50.07; the anisotropy parameter
g50.035.
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3200 56M. CONTI
respect to the predictions of existing models. In a frame
reference moving with the tip, the interface@defined as the
locusf(x,y,t)50.5] is described by an even functionz( ȳ)
of the shifted coordinateȳ5y2ytip . Figure 2 showsz( ȳ) at
two different times~hereg50.02!. We observe that in the
region u ȳu<0.3 and fort>0.06 the dendrite tip preserves i
shape.

The free boundary diffusional model, neglecting surfa
tension and nonequilibrium effects, admits a solution of
form @5#

z~ ȳ!5aȳ2, ~14!

wherea is related to the tip velocity and the initial supe
cooling through

D5Apv tip

4a
expS v tip

4a
D erfcSAv tip

4a
D . ~15!

Trying to adapt the above solution to the interface position
t50.1, a least-squares fit indicated a best value ofa53.26.
The fitting parabola is superimposed on the curves of Fig
Using the numerically computed value of the tip veloc
v tip529.8, Eq.~15! yields D50.856, which is quite close to
the actual valueD50.86.

Figure 3 shows, as a function ofȳ, the curvature of the
fitting parabola compared to that of the actual interface,
latter being determined numerically through the relation

K5
z9~ ȳ!

~11z82!3/2
. ~16!

We observe in the tip region a marked increase of the ac
curvature, beyond the values predicted by Eq.~14!; the in-
ability to describe the interface through a parabolic cu
near the tip has to be ascribed to the perturbations introdu
by capillary and nonequilibrium effects.

Let us now examine the solute distribution across the
terface. It is well known that in rapid solidification process
the partition coefficientk5cs /cl (csand cl being the solute

FIG. 2. Two snapshots of the crystal’s interface in a frame
reference centered at the dendrite tip. The solid line represent
best fitting parabolaz( ȳ)5aȳ2; g50.02.
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concentration on the solid and the liquid side of the interfa
respectively! deviates from the equilibrium valueke increas-
ing towards unity at large interface velocities. This pheno
enon, termedsolute trapping, was explained by Aziz@24#,
Aziz and Kaplan@25#, and Aziz and Boettinger@26# within
the continuous growth model, as a result of a diffusive red
tribution of solute and solvent across the interface. Th
found a dependence

k~v !5
ke1v/vd

11v/vd

, ~17!

wherevd is a characteristic kinetic velocity, which is ofte
taken asD/l , D being the interface diffusivity andl the
interface width. For a shape-preserving curvez( ȳ), the nor-
mal interface velocity, as a function ofȳ, is given by

v5
v tip

A11z82
. ~18!

Using Eqs.~17! and ~18!, it is possible to evaluatek(v)
along the two branches of the interface. Preliminarily w
have to fix the interface widthl .

Figure 4 shows, along the crystal axis, the solute conc
tration profile normalized asc̄(x)5@c(x)2cmin#/(cmax
2cmin), wherecmin andcmaxare the minimum and maximum
values ofc(x) along thex axis. We observe thatc̄(x) jumps
from 10% to 90% of its maximum value within a length o
orderl 50.044; then we fix this value as the interface wid
Choosing the interface diffusivity asD5Ds5Dl results in
vd523. Figure 5 shows the partition coefficientk evaluated
through Eqs.~17! and ~18! as a function ofȳ; on the same
graph we represented the ratiocs /cl as resulting from the
numerical simulation. The agreement between the t
curves is quite good. It is worth observing that Eq.~17!
conveys no information about the interface curvature~the
Gibbs-Thomson effect predicts anincrease of kdeparting
from the crystal tip@27#!; then we see that the numeric
results reflect the trapping of solute at the moving front. W
now discuss the response of the growth dynamics to va

f
the

FIG. 3. Curvature of the solid-liquid interface~squares!, com-
pared to that of the best-fitting parabola~solid curve!; g50.02 and
t50.1.
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56 3201GROWTH OF A NEEDLE CRYSTAL FROM AN . . .
tions of the anisotropy strengthg. Starting from the free
boundary formulation of the problem, Pelce` and Pomeau
@28# established a nonlocal equation for the deviation of
interface profile from the Ivantsov’s solution. As shown
Barbieri and Langer@8# and Ben Amar@10#, the solvability
condition that has to be satisfied requires that the prod
r2v tip scales asg27/4 for low values ofg. This result was
confirmed for the solidification of a pure substance by
phase-field simulations of Wheeler, Murray, and Schae
@29# and Marinozzi, Conti, and Marini Bettolo Marconi@30#.
Figure 6 shows in a log-log plotr2v tip versusg. For g<
931023 the tip radius and velocity were computed at t
end of the simulation, when a true steady regime had not
been reached; the tip radius was determined evaluating
expressionr5fx /fyy on the dendrite axis, at the solid
liquid interface. The numerical data fit well theg27/4 power
law ~solid line! for g<0.02. This result is somewhat surpri
ing: as the concentration field is strongly influenced by sol
trapping, one could expect a substantial deviation of
growth dynamics from the predictions of a model that d
cards nonequilibrium effects.

FIG. 4. Normalized concentration profile along the crysta
axis; g50.02 andt50.1.

FIG. 5. Partition coefficientk5cs /cl along the solid-liquid in-
terface. Solid line, as derived through Eq.~17!; dashed line, results
of the numerical simulation. The anisotropy parameter isg50.02
and t50.1.
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All the previous results were obtained assuming symm
ric diffusion in the solid and liquid phases. This descripti
could be adequate for thermal dendrites; however, when
diffusion field is the solute concentration, a more realis
approach should account for the lower mass diffusivity in
solid phase. Barbieri and Langer@8# utilized the free bound-
ary equations, assuming local thermodynamic equilibrium
show that the productr2v tip depends on the ratioDs /Dl as

r2v tip5
11Ds /Dl

2
~r2v tip!uDs /Dl51 . ~19!

The extension of this result to the chemical problem is
straightforward. For thermal dendrites, due to the Gib
Thomson effect, the growing solid is not isothermal and h
is driven towards the cold tip region. When diffusion in th
solid phase is suppressed, the tip can propagate at la
velocity and@see Eq.~15!# the tip radius diminishes; as th
productrv tip depends only onD, r2v tip diminishes as well.
Taking into account the interface kinetics undercooling alt
this picture quantitatively, but not qualitatively.

For chemical dendrites the situation is quite differe
Curvature lowers the solute concentration near the tip, in
solid region; on the contrary, solute trapping, whose effec
maximal near the tip, is there a continuous source of sol
Notice that, along the two branches of the interface, the
effects decay in a different way. Figure 7 showscs( ȳ) for
Ds50 ~triangles! andDs5Dl ~squares!; the accumulation of
solute near the tip is clearly recognizable when diffusion
the solid is suppressed. Due to competition of these effect
is not simple to predict the dependence of the growth dyna
ics on the ratioDs /Dl . As shown in Fig. 8, contrary to the
predictions of Eq.~19!, r2v tip decreases with increasin
Ds /Dl .

V. CONCLUSIONS

The growth of a needle crystal into its undercooled mel
generally addressed through the free boundary diffusio
model; the mechanism that underlies the selection of the

FIG. 6. A log-log plot of the productr2v tip versus the anisot-
ropy parameterg. The super-imposed straight line corresponds
the power lawr2v tip}g27/4.
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3202 56M. CONTI
radius and velocity has been identified under the approxi
tion of local equilibrium at the solid-liquid interface. In thi
limit the same set of equations can formally describe
growth process when the diffusion field is either the m
temperature or the concentration of impurities. This simil
ity is no longer retained when in rapid solidification pr
cesses the interfacial equilibrium is broken, as solute tr
ping is a phenomenon that has no counterpart in the the
problem. Through the phase-field model we were able
stress the nonequilibrium characteristics of the process.
system considered was a single dendrite growing into a

FIG. 7. Solute concentration on the solid side of the interfa
versusȳ. Triangles,Ds50; squares,Ds5Dl . The anisotropy pa-
rameter isg50.02 andt50.1.
e,
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persaturated binary solution. The solute segregation ac
the moving front is essentially determined by the interfa
kinetics and fits the description given by Aziz, Aziz an
Kaplan, and Aziz and Boettinger through the continuo
growth model.

In spite of the strong deviation from the interfacial equ
librium, for low values of the anisotropy strengthg, the
productr2v tip scales asg27/4, along the predictions of the
free boundary model. Suppressing diffusion in the solid
sults in an accumulation of solute near the tip andr2v tip
decreases with increasingDs /Dl ; the opposite behavior wa
predicted within the free boundary model, neglecting no
equilibrium effects.

e FIG. 8. Productr2v tip versus the ratioDs /Dl . The anisotropy
parameter isg50.02.
ys.

ys.

ri-

D

.

ev.
@1# D. A. Kessler, J. Koplik, and H. Levine, Adv. Phys.37, 255
~1988!.

@2# Y. Pomeau and M. Ben Amar, inSolids far from Equilibrium,
edited by Godreche~Cambridge University Press, Cambridg
1992!.

@3# E. A. Brener and V. I. Mel’nikov, Adv. Phys.40, 53 ~1991!.
@4# J. S. Langer, Rev. Mod. Phys.52, 1 ~1980!.
@5# P. Ivantsov, Dokl. Akad. Nauk. SSSR58, 567 ~1947!.
@6# J. S. Langer and D. C. Hong, Phys. Rev. A34, 1462~1986!.
@7# A. Barbieri, D. C. Hong, and J. S. Langer, Phys. Rev. A35,

1802 ~1987!.
@8# A. Barbieri and J. S. Langer, Phys. Rev. A39, 5314~1989!.
@9# Y. Pomeau and M. Ben Amar, Europhys. Lett.2, 307 ~1986!.

@10# M. Ben Amar, Phys. Rev. A41, 2080~1990!.
@11# G. Caginalp, inApplications of Field Theory to Statistical Me

chanics, edited by L. Garrido, Lecture Notes in Physics Vo
26 ~Springer, Berlin, 1984!, p. 216.

@12# G. Caginalp, inMaterial Instabilities in Continuum Problem
and Related Mathematical Problems, Proceedings of the
Heriot-Watt Symposium~1985–1986!, edited by J. Ball~Ox-
ford University Press, Oxford, 1988!, pp. 35–52.

@13# G. Caginalp, Arch. Ration. Mech. Anal.92, 205 ~1986!.
@14# G. Caginalp, Phys. Rev. A39, 5887~1989!.
@15# G. Caginalp and E. A. Socolovsky, J. Comput. Phys.95, 85

~1991!.
@16# A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Ph
Rev. A 45, 7424~1992!.

@17# A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Ph
Rev. E47, 1893~1993!.

@18# G. Caginalp and W. Xie, Phys. Rev. E48, 1897~1993!.
@19# G. Caginalp and J. Jones, Ann. Phys.~N.Y.! 237, 66 ~1995!.
@20# J. A. Warren and W. J. Boettinger, Acta Metall. Mater.43, 689

~1995!.
@21# M. Conti ~unpublished!.
@22# M. Conti ~unpublished!.
@23# G. B. McFadden, A. A. Wheeler, R. J. Braun, and S. R. Co

ell, Phys. Rev. E48, 2016~1993!.
@24# M. J. Aziz, J. Appl. Phys.53, 1158~1982!.
@25# M. J. Aziz and T. Kaplan, Acta Metall.36, 2335~1988!.
@26# M. J. Aziz and W. J. Boettinger, Acta Metall. Mater.42, 527

~1994!.
@27# M. C. Flemings,Solidification Processing~McGraw-Hill, New

York, 1974!.
@28# P. Pelce` and Y. Pomeau, Stud. Appl. Math.74, 245 ~1986!.
@29# A. A. Wheeler, B. T. Murray, and R. J. Schaefer, Physica

66, 243 ~1993!.
@30# F. Marinozzi, M. Conti, and U. Marini Bettolo Marconi, Phys

Rev. E53, 5039~1996!.
@31# R. Willnecker, D. M. Herlach, and B. Feuerbacher, Phys. R

Lett. 62, 2707~1989!.


